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1. INTRODUCTION

Because of concemn over the depletion of stratospheric ozone, production and sale of the widely used
Halon 1301 (CF;Br) and Halon 1211 (CF,C1Br) have been banned (Copenhagen 1987) as of 1 January
1994. A search is presently underway for suitable replacements. To be an acceptable replacement, the
new inhibitant must have high fire suppression efficiency, low toxicity, zero residue, compact storage
capability, rapid dispersion upon release, and high materials and systems compatibility (Philipczak 1993).
The need for environmentally friendly alternatives equal to, or surpassing, the flame inhibition efficiency
of Halons 1301 and 1211 is especially important for critical applications encountered in the military.
Scenarios range from extinguishment of electrical fires in computer facilities to suppression of a mist-
fireball explosion in an armored vehicle following penetration of the fuel cell by a projectile (Finnerty and
Polyanski 1993).

The overall goal of the Halon (a contraction of halogenated hydrocarbon) altematives work being
conducted at the U.S. Army Research Laboratory (ARL) is the experimental validation of halogen flame
mechanisms developed at the National Institute of Standards and Technology (NIST) (Burgess et al. 1994).
Once validated, these models will be used to predict inhibitor efficiency and toxic gas by-product
formation. The experimental approach employed at ARL uses infrared tunable diode laser (TDL) (Hanson
and Falcone 1978) and Fourier transform infrared (FT-IR) spectroscopies to measure in-situ flame
temperatures and concentrations of species participating in the combustion occurring in low-pressure
premixed and atmospheric pressure counterflow diffusion flames doped with small amounts of Halons and
candidate Halon alternatives. Vibrational spectroscopy was chosen as the diagnostic technique because
the measurement does not perturb the flame, and because nearly all of the combustion participants (with
the exception of homonuclear diatomics) may be observed in simple infrared absorption spectra.

The two flame systems were selected for different reasons. Flat, low-pressure laminar flow premixed-
gas flames are used because at low pressure, flame regions are expanded. This expansion provides better
spatial resolution for probing preheating and combustion flame zones (Biordi, Lazzara, and Papp 1975).
Atmospheric pressure counterflow diffusion flames are used because these flames may closely approximate
real fire scenarios, where diffusion and nonpremixed combustion are important (Linteris, in press [a]).
The experimental protocol involves qualitative flame species measurements using FT-IR spectroscopy,
while spectral temperature (Ouyang, Varghese, and Cline 1989) and species concentration flame profiles
are determined using tunable diode laser spectroscopy. Results from experiments in our lab using diode
laser absorption spectroscopy have been reported elsewhere (Daniel et al. 1994).




A drawback to the use of FT-IR spectroscopy for the investigation of inhibited flames is the limited
spatial resolution afforded by the polychromatic probe beam. Although the output beam waist may be
apertured to less than 1 mm, this results in significant loss of throughput, which decreases the signal-to-
noise ratio in the spectra. This combination makes obtaining spatially resolved information difficult. Still,
it should be pointed out that some researchers have had success obtaining spatial resolution through
combusting systems using FT-IR spectroscopy (Solomon et al. 1986; McNesby and Fifer 1993). Although
no effort is made here to quantify spectra of inhibited flames measured using FT-IR spectroscopy,
significant insight into the nature of flame inhibition may be gained from qualitative interpretation of
FT-IR spectra. This insight into the nature of the inhibited flame is the subject of this report.

2. EXPERIMENTAL

2.1 Atmospheric Pressure Counterflow Diffusion Bumer. The atmospheric pressure counterflow

diffusion burner is shown schematically in Figure 1. The bumer assembly was fabricated at NIST. A
brief explanation of the operation of the apparatus is as follows. Fuel (methane) is flowed at atmospheric
pressure into the flame region from below. Oxidizer (oxygen or air) and inhibitant is flowed into the
flame region from above. The flame appears as a thin, flat luminous disc (with slight edge curvature
pointing up toward the exhaust shroud) located between the fuel and oxidizer ports. Flame position in
the volume between fuel and oxidizer ports is determined by gas flow rates and stoichiometry. For neat
methane/oxygen flames using equal fuel and oxidizer flow rates, the flame disc is located nearer to the
oxidizer port because of the stoichiometry of the methane/oxygen combustion reaction. All gases are
exhausted from the flame region through an exhaust port that forms a shroud around the oxidizer port.

For the flames studied using the atmospheric pressure counterflow diffusion burner, typical flow rates
were 600 ml/min oxygen and 500 ml/min methane. When air was used as the oxidizer, the air flow rate
was 2.2 /min and the methane flow rate was 1.1 I/min. Inhibitant flow varied up to a maximum of 1.3%
of the total flow for each system investigated. These flow parameters were selected because they gave
the most stable flame for that particular fuel/oxidizer combination.

Flow was controlled by an MKS Instruments Inc. type 147B gas flow controller. Although the burner
exhaust shroud was connected to a high-volume vacuum pump, it was necessary to contain the
atmospheric pressure counterflow diffusion bumer within a large box equipped with optical ports and a
chimney attached to a fume hood. This arrangement was to prevent noxious fumes (HF and CF,0) from
entering the main laboratory.



Orxidizzr and Inibitant Entry

* Y

Suction Exhanst

Figure 1. A schematic of the atmospheric pressure counterflow
diffusion burner used in these experiments.

2.2 Low-Pressure Burner. Most of the low-pressure bumer experimental apparatus has been described

in a previous publication (Daniel, McNesby, and Miziolek 1993). The low-pressure premixed
methane/oxygen flame was supported on a water-cooled, 6-cm-diameter stainless steel fritted, flat flame
bummer (McKenna Industries). Gases were mixed just prior to entering a final mixing chamber
immediately below the fritted bumer head. Gas flow was controlled by an MKS type 147B gas flow
controller. The low-pressure burner was mounted on a translational stage, which was mounted to a linear
motion feedthrough. This low-pressure burner assembly was contained in an evacuable chamber equipped
with CaF, windows. Pressure was maintained within the chamber by a Heraeus-Leybold Model SV-100
rotary vacuum pump and controlled using an electrically actuated MKS type 253A butterfly valve.
Pressure inside the chamber was monitored using MKS type 390 capacitance manometers. Typical flow
rates were 200 ml/min oxygen and 100 ml/min methane. Halon flow rates varied up to 15% of the total
flow. Typical pressure within the chamber during collection of flame spectra was 20 torr. The
experimental apparatus is shown in Figure 2.

2.3 FT-IR Spectrometer. The FT-IR spectrometer was manufactured by Mattson Instruments. All
counterflow diffusion flame spectra were measured at 4 cm™! resolution employing triangular apodization
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Figure 2. A schematic of the low-pressure bumner apparatus used in these experiments,
showing the bumer inside the evacuable chamber.

using coaddition of 128 scans. Total scan time was approximately 4 min. The infrared beam path was
not purged for these experiments. Each single beam flame spectrum was ratioed to a spectrum measured
over the same path, but with no flame or fuel/oxidizer/inhibitor mixture present. Since the minimum beam
waist diameter of the spectrometer was approximately equal to the distance between fuel and oxidizer ports
in the counterflow diffusion burner (see Figure 1), no spatial resolution within the flame was possible, and
the resultant spectra show both precursors (fuel and inhibitant) and combustion products.

For the low-pressure experiments, spectra were measured at 1 cm™! resolution, employing triangular
apodization using coaddition of 500 scans. Total scan time was approximately 20 min. The infrared
probe beam path was purged with dry nitrogen, and each single beam flame spectrum ratioed to a
spectrum through the purged beam path with no flame present and the low-pressure chamber evacuated.
The probe beam aperture was set to a diameter of 4 mm when passing through the low-pressure chamber.
Since the beam position of the infrared probe was fixed, spectra of different lines-of-sight through the
low-pressure flame were measured by moving the burner assembly within the evacuable chamber.




For each set of experiments, reflection of infrared emission through the spectrometer and back onto
the detector was checked by collecting spectra with the tungsten carbide filament turned off. In all cases,
no interferometer-modulated emission was observed. All gases used in these experiments were of spectral
purity and were obtained from Matheson, Inc., except for the CF;Br, which was obtained from PCR Inc.
All gases were used as supplied without further purification.

3. RESULTS AND DISCUSSION

Figure 3 shows the absorbance spectrum through an atmospheric pressure counterflow diffusion
methane/air flame with no agent added. The methane fuel is the most prominent feature in the spectrum.
Figure 4 shows the same flame doped through the oxidizer port side with 1.0% CF;Br. Addition of CF;Br
beyond 1% of the total flow causes flame flicker and eventual extinguishment, in agreement with previous
studies of diffusion flame extinguishment by CF;Br (Bajpai 1974). Interesting features of this spectrum
are the presence of carbonyl difluoride (CF,0), near 1,950 cm™!, hydrogen fluoride (HF), near 3,700
cm™1, and Halon 1301 (CF;Br), near 1,200 cm™L. Both HF and CF,0 are highly toxic and corrosive gases
(Sheinson, Musick, and Carhart 1981); therefore, care must be exercised when doping any flame with
Halon 1301 when extinguishment is either not a goal or does not occur immediately. Figure 5 shows
spectra of the atmospheric pressure methane/air counterflow diffusion flame with successive additions of
Halon 1301. It is evident from these spectra that CF,O formation in these flames is dependent upon the
Halon 1301 dopant level.

Figure 6 shows spectra of atmospheric pressure counterflow diffusion methane/air flames doped at the
1% level with Halon 1301 (CF;Br), 1.3% CF,, and 1.3% CF,H,. For the CF,H, doped flame, there is
a considerable amount of HF formation near 3,700 cm™!. For the CF 4 doped flame, there is no indication
of HF or CFzO formation, presumably because the CF bond in CF, is not broken in the flame (Linteris,
in press [b]). The degree to which CF,0 is formed in the atmospheric pressure methane/air counterflow
diffusion flames doped with CF;Br, CF,H,, and CF, parallels their efficiency as flame inhibitors
determined using cup bumner experiments (CF;Br>CF;H>CF,H,>CF,) (Linteris, in press [b]).

Figure 7 shows spectra of atmospheric pressure methane/air and methane/oxygen counterflow diffusion
flames doped with CF,. The hotter methane/oxygen flame shows significant HF formation, indicating
cleavage of the C-F bond in CF,. It should be noted that there is no spectral evidence of CF,0 formation
in this flame, even though HF is formed. For this reason, we believe that it is questionable to correlate

HF formation with inhibitor efficiency.
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Figure 3. The FT-IR absorbance spectrum measured through an atmospheric pressure
counterflow diffusion methane/air flame.
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Figure 4. The FT-IR absorbance spectrum measured through an atmospheric pressure
counterflow diffusion methane/air flame doped with 1.0% CF,Br.
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Figure 5. The FT-IR absorbance spectra measured through an atmospheric pressure counterflow
diffusion methane/air flame doped with successively increasing amounts of CF,Br. Note
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Figure 7. The FT-IR absorbance spectra measured through an atmospheric pressure counterflow
diffusion methane/air flame doped with 1.0% CF, and an atmospheric pressure counterflow
diffusion methane/oxygen flame doped with 1.0% CF,.

Figure 8 shows the spectra of a low-pressure premixed-gas stoichiometric methane/oxygen flame with
and without addition of 2.6% CF,;Br. In contrast to the counterflow diffusion atmospheric pressure
methane/air flame doped with CF3Br, the low-pressure flame shows no evidence of CF,0O formation near
1,950 cm™L. Figure 9 shows the spectrum of the low-pressure premixed-gas methane/oxygen flame doped
with 15% CF,Br. Evident from this spectrum is copious HF formation near 3,700 cm™! and significant
HBr formation near 2,600 cm™1. However, even at this high CF;Br dopant level, there is no indication

of CF,Br formation at any probe beam position within the flame.

Tunable diode laser infrared absorption measurements of low-pressure flames inhibited by CF;Br have
shown that CF,0 is formed and then rapidly consumed. Modeling studies of these results indicate that
at high temperatures, CF,0 is decomposed before leaving the luminous zone of the flame (Miziolek et al.,
in press). We believe that with line-of-sight spatial resolution of less than 1 mm and spectral resolution
better than 1 cm™}, CF,0 would have been detected in these flames using FT-IR spectroscopy.

It is noteworthy that Halon 1301 was unable to extinguish a low-pressure premixed gas stoichiometric
methane/oxygen flame even at percent total flow levels 15 times higher than those required to extinguish
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atmospheric pressure counterflow diffusion flames. This suggests that the inhibiting effect of Halon 1301
may be most important in flame regions where combustion is nonstoichiometric and diffusion fed. These

conditions describe most "real" fires.

Finally, from Figures 4, 8, and 9, it should be noted (assuming similar infrared absorption cross
sections for HF and HBr) that there is much less HBr formation than would be expected based on the
amounts of HF formation and the molecular formula of Halon 1301 (CF;Br). This supports calculations
that show the rapid removal of HBr from the flame system by reaction (Safiech, Vandooren, and Tiggelin
1982) with H and OH, and the formation of molecular bromine, which is not observable using infrared
absorption spectroscopy.

4. CONCLUSION

Although the data are somewhat limited, we believe several conclusions may be reached. Most
importantly, we believe the data show that inhibitor effect is highly dependent on the type of combustion
system being investigated. Specifically, for atmospheric pressure counterflow diffusion methane/air flames
inhibited by CF;Br, large amounts of CF,O are observed.

Conversely, for low-pressure premixed-gas stoichiometric laminar methane/oxygen flames inhibited
by CF;Br, no measurable (by FT-IR) CF,0 is observed. This suggests that inhibition of real flames by
Halon 1301 may be most important in regions of nonstoichiometric combustion.

Additionally, CF,0 may be a good indicator of the degree of chemical flame inhibition by Halons.
Also, it appears that although CF, may decompose in hot flames to yield HF, the absence of CF,0
formation indicates that CF, does not participate in flame inhibition by the radical scavenging mechanism
assumed to be responsible for chemical flame inhibition by Halon 1301. Finally, both low-pressure and
atmospheric pressure flames inhibited by Halon 1301 show less HBr formation than would be expected
based solely upon the amount of HF observed and the molecular formula of the inhibitant (CF;Br). This
supports the mechanism of rapid HBr removal from the flame via reactions with H and OH, and the

conversion of Br atoms to molecular bromine.
We believe that this rather straightforward experimental setup is a valuable tool and may be used to

see differences in flame inhibition of real fires by different agents. The technique may be a useful
screening test for candidate replacement agents prior to full-scale testing. We are presently engaged in

10




the construction of a new counterflow diffusion burner that will provide larger flame surface area and be
capable of low-pressure operation.
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